807| 0
|
[python] 基于Python+Spark的数据科学与商业实践(金融风控 客户预警 信用评分卡 企业内训) |
课程介绍: 客户洞察是分析型客户关系管理的核心,是实现客户智能的必要手段,其旨在增加CRM系统的商业分析与辅助决策能力。分析型CRM需要整合外部客户数据、渠道数据和大量交易数据,并从中提取出隐含有用的信息,这便是数据科学的用武之地。客户生命周期是客户洞察中最常用的分析工具,企业对初次接触的客户了解甚少,随着交往时间的延长,对其洞察越深入,分析主题越丰富。本课程就按照客户产品生命周期逐步展开数据科学的不同议题。 本课程全面介绍了金融银行系统所涉及的最常见的算法及企业应用场景以及结合大数据Spark的代码实现,系企业一线数据挖掘、人工智能算法工程师结合亲身工作经历讲解,企业内部培训,全套课件+代码,具有很强的实用意义和参考价值 课程目录: 1 数据科学概述.mp4 2 数据科学的应用场景.mp4 3 数据科学与客户智能.mp4 4 数据科学基本概念.mp4 5 案例:利用RFM营销模型代码演示分析流程(一).mp4 6 案例:利用RFM营销模型代码演示分析流程(二).mp4 7 案例:利用RFM营销模型代码演示分析流程(三).mp4 8 案例:利用RFM营销模型代码演示分析流程(四).mp4 9 案例:利用RFM营销模型代码演示分析流程(五).mp4 10 数据科学家的角色及功能.mp4 11 数据科学家的能力范畴.mp4 12 CRM 数据分析涉及的技术与业务.mp4 13 CRM 数据挖掘常用分类算法举例(上).mp4 14 CRM 数据挖掘常用分类算法举例(下).mp4 15 金融行业客户生命周期价值在企业中的实际应用.mp4 16 金融行业客户获取与价值预测在企业中的实际应用.mp4 17 金融行业初始和行为信用评级在企业中的实际应用.mp4 18 金融行业客户洞察原理及在企业中的实际应用.mp4 19 金融行业交叉销售原理及在企业中的实际应用.mp4 20 金融行业复杂网络反欺诈原理及在企业中的实际应用.mp4 21 金融行业客户流失预测与挽留在企业中的实际应用.mp4 22 基于客户生命周期的数据分析代码案例(上).mp4 23 基于客户生命周期的数据分析代码案例(下).mp4 24 案例:实战个人贷款违约预测模型(一).mp4 25 案例:实战个人贷款违约预测模型(二).mp4 26 案例:实战个人贷款违约预测模型(三).mp4 27 案例:实战个人贷款违约预测模型(四).mp4 28 案例:实战个人贷款违约预测模型(五).mp4 29 案例:实战个人贷款违约预测模型(六).mp4 30 案例:实战个人贷款违约预测模型(七).mp4 31 案例:实战个人贷款违约预测模型 - 基于PySpark的实现 (上).mp4 32 案例:实战个人贷款违约预测模型 - 基于PySpark的实现 (下).mp4 33 案例:实战银行零售产品的交叉营销 - 场景、原理与企业应用 .mp4 34 案例:实战银行零售产品的交叉营销 - 关联规则挖掘算法.mp4 35 案例:实战银行零售产品的交叉营销 - 购物车算法分析.mp4 36 案例:实战银行零售产品的交叉营销 - Python+Spark大数据开发环境搭建(上).mp4 37 案例:实战银行零售产品的交叉营销 - Python+Spark大数据开发环境搭建(下).mp4 38 案例:实战银行零售产品的交叉营销 - 关联规则算法代码实现(基于PySpark).mp4 39 案例:实战银行零售产品的交叉营销 - 关联规则算法详解.mp4 40 案例:实战银行零售产品的交叉营销 - Apiri算法原理及代码实现(基于PySpark).mp4 课程配套资料.rar
购买主题
本主题需向作者支付 10 学币 才能浏览
| |
学IT吧 www.xueit8.com X3.4
Copyright © 2001-2021, Tencent Cloud.